Source code for azure.mgmt.datafactory.models.azure_ml_linked_service_py3

# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------

from .linked_service_py3 import LinkedService


[docs]class AzureMLLinkedService(LinkedService): """Azure ML Web Service linked service. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized this collection :type additional_properties: dict[str, object] :param connect_via: The integration runtime reference. :type connect_via: ~azure.mgmt.datafactory.models.IntegrationRuntimeReference :param description: Linked service description. :type description: str :param parameters: Parameters for linked service. :type parameters: dict[str, ~azure.mgmt.datafactory.models.ParameterSpecification] :param annotations: List of tags that can be used for describing the linked service. :type annotations: list[object] :param type: Required. Constant filled by server. :type type: str :param ml_endpoint: Required. The Batch Execution REST URL for an Azure ML Web Service endpoint. Type: string (or Expression with resultType string). :type ml_endpoint: object :param api_key: Required. The API key for accessing the Azure ML model endpoint. :type api_key: ~azure.mgmt.datafactory.models.SecretBase :param update_resource_endpoint: The Update Resource REST URL for an Azure ML Web Service endpoint. Type: string (or Expression with resultType string). :type update_resource_endpoint: object :param service_principal_id: The ID of the service principal used to authenticate against the ARM-based updateResourceEndpoint of an Azure ML web service. Type: string (or Expression with resultType string). :type service_principal_id: object :param service_principal_key: The key of the service principal used to authenticate against the ARM-based updateResourceEndpoint of an Azure ML web service. :type service_principal_key: ~azure.mgmt.datafactory.models.SecretBase :param tenant: The name or ID of the tenant to which the service principal belongs. Type: string (or Expression with resultType string). :type tenant: object :param encrypted_credential: The encrypted credential used for authentication. Credentials are encrypted using the integration runtime credential manager. Type: string (or Expression with resultType string). :type encrypted_credential: object """ _validation = { 'type': {'required': True}, 'ml_endpoint': {'required': True}, 'api_key': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'connect_via': {'key': 'connectVia', 'type': 'IntegrationRuntimeReference'}, 'description': {'key': 'description', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': '{ParameterSpecification}'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'type': {'key': 'type', 'type': 'str'}, 'ml_endpoint': {'key': 'typeProperties.mlEndpoint', 'type': 'object'}, 'api_key': {'key': 'typeProperties.apiKey', 'type': 'SecretBase'}, 'update_resource_endpoint': {'key': 'typeProperties.updateResourceEndpoint', 'type': 'object'}, 'service_principal_id': {'key': 'typeProperties.servicePrincipalId', 'type': 'object'}, 'service_principal_key': {'key': 'typeProperties.servicePrincipalKey', 'type': 'SecretBase'}, 'tenant': {'key': 'typeProperties.tenant', 'type': 'object'}, 'encrypted_credential': {'key': 'typeProperties.encryptedCredential', 'type': 'object'}, } def __init__(self, *, ml_endpoint, api_key, additional_properties=None, connect_via=None, description: str=None, parameters=None, annotations=None, update_resource_endpoint=None, service_principal_id=None, service_principal_key=None, tenant=None, encrypted_credential=None, **kwargs) -> None: super(AzureMLLinkedService, self).__init__(additional_properties=additional_properties, connect_via=connect_via, description=description, parameters=parameters, annotations=annotations, **kwargs) self.ml_endpoint = ml_endpoint self.api_key = api_key self.update_resource_endpoint = update_resource_endpoint self.service_principal_id = service_principal_id self.service_principal_key = service_principal_key self.tenant = tenant self.encrypted_credential = encrypted_credential self.type = 'AzureML'